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In this supplementary material, we provide more details about
the network architecture and loss functions. More information on
our experimental settings and more results of our method are also
provided. We strongly recommend watching the supplementary
video.

A NETWORK ARCHITECTURE AND
TRAINING DETAILS

We describe more implementation details on the network architec-
ture used in Sec. A.1 and the training settings in Sec. A.2.

A.1 Network Architecture
Here, we present the details of the network architecture as shown in
Figure 2. Note that we use the same Keypoint Detector 𝑬𝑘 , Flow Es-
timator 𝑭 and Image Generator 𝑮 as in [Siarohin et al. 2019]. Please
refer to [Siarohin et al. 2019] for more details. The architecture of
other networks are described below.

• Identity encoder 𝑬𝐼 . This network extracts identity informa-
tion from the source image 𝐼 . We use a number of down-
sampling blocks to produce the identity feature f𝐼 with the
channel dimension of 512.

• Audio encoder 𝑬𝑎 . By taking the 28 × 12-dim audio features
as input, we apply convolutional neural networks (CNN)
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Figure 1: Emotion interpolation. We make interpolation be-
tween different emotion features and the pose is set to be
static for better visualization. Please zoom in to see more
details. Natural faces from Voxceleb dataset [Nagrani et al.
2020] ©Visual Geometry Group (CC BY).

followed by multi-layer perceptrons (MLP) to obtain the
256-dim audio feature f𝑎 .

• Pose encoder 𝑬𝑝 . The pose encoder 𝑬𝑝 is composed of a 2-
layer multi-layer perceptrons (MLP) that project the 6-dim
pose vector into the 256-dim pose feature f𝑝 .

• Decoder 𝑫 . After concatenating the features extracted from
three different inputs (i.e., f𝐼 , f𝑎 and f𝑝 ), we employ a long
short-term memory (LSTM) network followed by convolu-
tional neural networks (CNN) to predict the unsupervised
key-points 𝒙𝑎1:𝑇 and jacobians 𝑱𝑎1:𝑇 . In this way, the sequential
relationship between audio signals and motion representa-
tions can be better captured.

• Emotion Extractor 𝑬𝑒 . The network takes the emotion source
frames as input and aims at extracting the disentangled emo-
tion information. We borrow a part of the architecture from
𝑬𝑘 in [Siarohin et al. 2019] which consists of down sampling
and an Hourglass network to extract the high-level informa-
tion from the input frames. The subsequent ResBlock and
MLP are used to decouple the emotion feature f𝑒 with the
dimension of 512.

• Displacement predictor 𝑷𝑑 . The goal of this component is to
predict emotional displacement for the motion representa-
tions based on the extracted emotion feature and the neutral
key-poinsts 𝒙𝑎 and jacobians 𝑱𝑎 . We first perform positional
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Figure 2: The network architectures of different components in our Emotion-Aware Motion Model.
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Figure 3: Results of the Audio2Facial-Dynamics Module on two cases. The top row shows the identity, speech content audio,
and emotion source clips. The second row shows the corresponding frames of the audio source, i.e., ground truth for mouth
shapes. Please zoom in to see more details.

encoding on the key-points and jacobians to capture high-
frequency details, in which the dimension of the sinusoid
is set to be 10. Then a 2-layer MLP is utilized to project
the neutral embedding into a 512-dim feature. We combine
the neutral feature with the emotion feature and feed them
into a 4-layer MLP to obtain the final key-points Δ𝒙𝑎

′
and

jacobians Δ𝑱𝑎
′
displacements.

A.2 Training Details
For the loss function of Audio2Facial-Dynamics Module, we follow
[Siarohin et al. 2019] to add another loss term 𝜆ℎ ∥𝒉𝑎𝑡 − 𝒉𝑣𝑡 ∥1 into
𝐿𝑘𝑝 in Section 3.1, where 𝒉𝑣𝑡 denotes the intermediate heatmap
produced by 𝑬𝑘 from the training video clipV and 𝜆ℎ is the weight

for the heatmap loss. Experiments show that this heatmap loss is
helpful for training convergence and we empirically set 𝜆ℎ as 10.
In addition, we set the weight of perceptual loss term 𝜆𝑝𝑒𝑟 as 0.1
during training.

We follow the self-supervised training strategy and the training
procedure of our approach is performed in a progressive manner.
Specifically, we first train our Audio2Facial-Dynamics module on
the LRW dataset. Then we freeze this part and train our Implicit
Emotion Displacement Learner with the MEAD dataset. Note that
different from LRW, here we use a randomly selected image from
neutral videos of the same speaker as the identity image in MEAD
so that neutral motion representations can be generated from the
A2DF module. All experiments are implemented on PyTorch using
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Figure 4: Results of the Audio2Facial-Dynamics Module on
two cases with emotional input. The upper part shows re-
sults with emotional source image input while the lower part
shows results with emotional audio input. Natural videos
from LRW dataset [Chung and Zisserman 2016] ©BBC and
MEAD dataset [Wang et al. 2020] ©SenseTime. Natural face
(top) from CREMA-D dataset [Cao et al. 2014] (ODbL). Natu-
ral face (bottom) from Voxceleb dataset [Nagrani et al. 2020]
©Visual Geometry Group (CC BY).

Adam optimizer with initial learning rate of 2×10−4, which linearly
decays to 2 × 10−5. The two parts require 3 and 2 days for training
on 4 NVIDIA 1080Ti GPUs, respectively.

B EXPERIMENT SETTINGS AND RESULTS
B.1 Experiment Settings

Quantitative Experiment Setting. The quantitative experiments
are conducted in a self-driving setting. For the LRW dataset which
has no emotion, we only use the A2FD Module to generate neutral
results from the source image, the audio source and the pose source.
The audio and pose source are directly taken from the test video, and
the source image is randomly selected from the test video. While
for the MEAD dataset with emotion, we use the full pipeline to
generate emotional results, in which an additional emotion source
is required. The audio of the test video is used as the audio source,
while the source image is randomly selected from a neutral video
of the same speaker as in the test video. However, since our method
involves an additional video to control the emotion, we adopt a fair
setting as in [Zhou et al. 2021] for emotion source acquisition by
not using the test video as emotion source directly. Specifically, we
first select another image with a different identity and then drive
this image with the test video in MEAD through FOMM [Siarohin
et al. 2019]. The generated emotional video shares the same facial
expression and head motion but has a different identity with the
test video. Thus can serve as the emotion source and pose source.

Qualitative Experiment Setting. Different from the self-driving
setting in quantitative experiments, our qualitative experiments
aim to evaluate our method under real scenarios. Therefore, in the
qualitative experiments, we use in-the-wild data as the source im-
ages (e.g., celebrity portraits from the Internet). In order to evaluate
the capability of our method, we randomly select different audio
and pose sources from the LRW dataset. Note that the audio source

Source
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Ours

W-A-S

Figure 5: Comparisons with person-specific emotional talk-
ing face methods.

and the pose source can come from different videos. In terms of the
emotion source videos, we randomly select them from the test set
in the Mead dataset.

B.2 More Experimental Results and Analysis
Results of the A2FD module. We further explore the results of

the A2FD module by providing different kinds of input. We first
show the results of our A2FD module in Figure 3. Our A2FD mod-
ule generates talking face animation with accurate mouth motions
and head movements in a neutral expression. The comparison be-
tween the results of the A2FD module and ours also demonstrates
that the emotion displacements learned from the Implicit Emotion
Displacement Learner are disentangled with the speech content
and facial structure information of the emotion source video. More
comparisons results can be seen in the accompanying video.

Considering that one may also be interested in whether the
generated results of our A2FD module are generally neutralized,
since the input signals (i.e., source image and speech source) can
also have emotions, we also conduct an experiment by replacing
either the source image or the speech audio with an emotional one
to further evaluate our A2FD module. The results are shown in
Figure 4. When using emotional source image, the generated frames
just maintain the same facial expressions as the emotional source
image (see the first row), which results in an unnatural static upper
face. While no obvious changes are made to the facial expressions
of synthesized results when using emotional speech audio (see the
bottom row). The results demonstrate that the A2FDmodule mainly
models the facial dynamics related to the input pose and speech
content, while hardly synthesizes emotion modifications on the
source image.

Notably, our objective is to achieve emotion manipulation for
one-shot talking face setting, which focuses on generating emo-
tional results based on a neutral source image and an emotional
audio input. Our EAMM decomposes this problem into two sub-
problems, lip-sync and emotion editing, where the A2FD module
is designed to tackle with the former. Therefore, we only train the
A2FD module with an emotion-free dataset LRW [Chung and Zis-
serman 2016] (see Sec 3.3 in the main paper) in order to produce
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Table 1: Comparison of identity preservation. We show cosine similarities (the maximum value is 1) of the identity features
under eight emotions.

Method/Emotion Angry Contempt Disgusted Fear Happy Neutral Sad Surprised Mean
ATVG [2019] 0.77 0.81 0.80 0.81 0.80 0.82 0.80 0.80 0.80
SDA [2018] 0.40 0.42 0.39 0.37 0.41 0.38 0.42 0.41 0.40
Wav2Lip [2020] 0.85 0.85 0.85 0.85 0.85 0.84 0.85 0.85 0.85
MakeItTalk [2020] 0.81 0.82 0.82 0.81 0.82 0.82 0.82 0.82 0.82
PC-AVS [2021] 0.57 0.51 0.59 0.58 0.58 0.57 0.53 0.59 0.56
Real 0.68 0.64 0.58 0.72 0.71 0.87 0.67 0.76 0.70
Ours 0.70 0.63 0.70 0.68 0.74 0.81 0.71 0.69 0.70

Source

Static 

Emotion

Dynamic 

Emotion

Figure 6: Results with static and dynamic emotion source.
The top row shows the identity, audio and dynamic emotion
source.We take the first frame in dynamic source as the static
emotion source. Natural face from Voxceleb dataset [Nagrani
et al. 2020] ©Visual Geometry Group (CC BY).

accurate mouth shapes, and that’s why the A2FD module cannot
generate emotional results even with emotional audio inputs.

More Comparison Results. We further make comparisons with
person-specific emotional talking face methods EVP [Ji et al. 2021]
andWrite-a-speaker [Li et al. 2021]. When comparing with Write-a-
speaker, we first crop a neutral image with the same identity as the
source image for our method. Then we randomly select a video in
MEAD dataset with the same emotion type as the emotion source.
Since the code of Write-a-speaker has not been fully released, we
can only crop an emotional video clip from the provided demo
video accordingly as the counterpart. When comparing with EVP,
we select a video with the same identity and emotion type as the
emotion source for our method. In terms of pose source, we directly
use the input video of EVP as our pose source video for fairness.
The qualitative comparison results are provided in Figure 5. Our
method can generate vivid emotional animation results though
we lack clarity and facial details like wrinkles compared with the
other two works. The reason is that they are both person-specific
methods that require a long reference video of the target speaker
for training, while our method only requires one reference image.

Identity Preservation. We compare the identity preservation abil-
ity of our networkwith other state-of-the-artmethods by leveraging
an off-the-shelf face recognition network [Deng et al. 2019]. The
experiments are conducted on MEAD dataset. Specifically, we first
use the recognition network to extract the deep identity feature
for each frame and then compute the cosine similarities between
the features of the generated frames and the input neutral source
image. The results are illustrated in Table 1. We show the mean sim-
ilarities under eight different emotions. Note that only our method
can generate results with obvious emotions. Wav2Lip achieves the
highest score on almost all emotions because it only edits mouth
motion areas while keeping other areas unaltered. Moreover, we
find that emotion can affect the identity similarities, since the value
of other emotion categories are lower than neutral for real data.
Considering these two factors, we claim that our method achieves
comparable identity preservation with other methods since our
value under neutral expressions is high and we get mean values
close to the real data.

Dynamic Emotion Generation. By extracting emotion from an
emotion source video, we attempt to generate emotion dynamics
on neutral faces. We perform another experiment to compare the
facial expressions synthesized from a static emotion source and
a dynamic emotion source. Concretely, we randomly select one
frame from the dynamic emotion video as the static emotion source
and the comparison results are shown in Figure 6. Our method can
capture the motion trends in video, e.g., the movement of eyebrows
(see the red arrows), while results with static emotion input keep
the same expression. Thus using an emotion video input can bring
facial expression dynamics to the animation results.

Emotion Manipulation. By representing emotion in the emotion
source video as a high-dimensional feature, we construct a con-
tinuous emotion latent space, where features of the same type are
clustered. Thus we are able to manipulate the emotion by inter-
polating between the features from different emotion categories.
The results are shown in Figure 1. The transformation is smooth
and other factors like the head pose and identity are preserved well
in the process, which indicates that our work is able to achieve
emotion manipulation.

Limitations. We claim limitations of our work in Section 4.4 and
here we show a simple case for each limitation in Figure 7. The
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Figure 7: Two cases for limitations. Natural face from
CREMA-D dataset [Cao et al. 2014] (ODbL).

first limitation is our method cannot generate satisfactory emotion
dynamics related to the mouth region due to the mouth occlusion
operation in the data augmentation process. As illustrated in the
top row of Figure 7, the emotion traits in the mouth region, e.g.
the dropping mouth corner in the synthesized result are not ob-
vious compared with the real data. The second limitation is the
emotion pattern extracted from a character sometimes seems to
be unnatural after being transferred into another one. The bot-
tom row shows the comparison between our synthesized emotion
and the real emotion of the same identity. We can observe that
the emotion pattern transferred from the emotion source video
looks less natural when compared with the real one. Thus how to
generate personalized emotion of a certain character remains an
open challenge. Moreover, since we resort to a video for emotion
retrieval, we have not considered the correlation between audio and
facial emotion thoughtfully in our work. For example, the emotion
categories of the audio and video can be different. Users have to
pay more attention to the emotion type of the input to avoid the
inconsistency.
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