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In this supplementary material, we present more infor-
mation on our architecture as well as implementation de-
tails and more qualitative results from our experiments.
We strongly recommend watching the supplementary video
where more animation results and comparisons are shown.

1. Network Architecture

The two components of our EVP algorithm have been
briefly introduced in Section 3 of the main paper. Here we
provide more details of the network architecture.

1.1. Cross-Reconstructed Emotion Disentangle-
ment

The two encoders Ec and Ee in Sec.3.2 are composed
of convolutional neural networks(CNN) followed by multi-
layer perceptrons(MLP). They extract the content and emo-
tion features of the input audio clips separately. Moreover,
we set the channel size of the content audio embedding
Ec(x) and the emotion audio representation Ee(x) to be
256, 128 based on our experiments.

1.2. Target-Adaptive Face Synthesis

Audio-to-landmark Module. Then channel size of the
identity embedding fa in the audio-to-landmark network is
256. Here we use the long short-term memory (LSTM) net-
work to predict the landmark displacement ld since it can
capture sequential relationships between audio signals and
landmark animations.

3D-Aware Keypoint Alignment. The parametric 3D
face model [1] here recovers low-dimensional pose p ∈ R6,
geometry g ∈ R199 and expression parameters e ∈ R29

for each pair of predicted landmarks and detected ones by
solving a non-linear optimization problem. We obtain the
pose-invariant 3D landmarks L3d

p from the geometry and
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Figure 1: Qualitative results of EVP. Each row shows characters
with different emotions listed on the leaf side.

expression parameters:

L3d
p = m+

199∑
k=1

gkb
geo
k +

29∑
k=1

ekb
exp
k . (1)

where m ∈ R3 is the average facial landmark positions,
bgeok and bexpk are geometry and expression basis computed
via principal component analysis (PCA) on high-quality fa-
cial scans and blendshapes.

Edge-to-Video Translation Network. Following [3],
we adopt a conditional-GAN architecture for our edge-to-
video translation network. The generator G is designed in a



coarse-to-fine manner [4], aiming to transfer the predicted
motion to the target video frames under the guidance of the
edge map. Se can get the reconstruction loss:

Lrecon = ‖x̂t −G(xt|et)‖2. (2)

where x̂t is the generated frame, xt is the target frame
and et is the edge map. In terms of the discriminator, we
adopt two discriminators DI and DV . Specially, the im-
age discriminator DI promises the fidelity of the gener-
ated frames. It takes image pair (xt, et) as input.While the
video discriminator DV guarantees the temporal dynamics
between consecutive frames. It takes consecutive images
pairs (xt−1

t−K , w
t−1
t−K) as input, where wt−1

t−K denotes the op-
tical flow for the K consecutive real images. Thus the GAN
loss is written as:

LGAN = min
G

max
DI

LI(G,DI) + min
G

max
DV

LI(G,DV ),

(3)
where LI is the LSGAN loss on images defined by the con-
ditional discriminator. We also use VGG feature loss which
computes the feature map distances between generated ones
and real-images from a pre-trained VGG network:

Lvgg = ‖VGG(x̂t)− VGG(G(xt|et))‖1. (4)

The overall loss functions can be summarized as below:

L = LGAN + λreconLrecon + λvggLvgg, (5)

where λrecon and λvgg represent loss weights.

2. More Details and Results
2.1. Implementation Details

We trained our EVP network using Pytorch [2]. We
use the Adam optimizer where the learning rate is 10−4,
beta1 is 0.5 and beta2 is 0.999. For loss weights, we em-
pirically set the loss weight λcla and λcon in the Cross-
Reconstructed Emotion Disentanglement part as 1, and set
the weight λrecon and λvgg in the Edge-to-Video Transla-
tion Network as 2. It takes about 6 hours to train the cross-
reconstructed Emotion disentanglement network, 2 hours
for the audio-to-landmark network, and 48 hours to train the
rendering-to-video translation network. The whole network
is trained and tested on a single NVIDIA GTX 1080Ti.

2.2. Qualitative Results

We show the image results of our EVP algorithm in Fig-
ure 1 and make comparisons with the other methods on var-
ious sequences as shown in the accompanying video. Our
algorithm generates emotional talking faces for different
identities, head poses and backgrounds which is better than
the other methods.
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Figure 2: Results of different input for content and emotion
encoders.
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Figure 3: Emotion category and intensity manipulation. Here
α represents the interploation weight.

To further validate the disentanglement of emotion and
content features from audio signals, we use the same au-
dio input for the content encoder and different inputs for
the emotion encoder. As shown in Fig. 2, synthesized faces
with the same speech content but varying emotions share
identical lip movements(in the red box). As for the same
emotion, no matter what the speech content is, the emotion
is consistently expressed in the generated frames. More re-
sults shown in the accompanying video also prove that the
speech content and emotion information are successfully
decoupled from the audio signals.

Moreover, the learned emotion latent space is continu-
ous, which enables us to edit the emotion in talking face
videos, such as emotion category and intensity. We show
the emotion editing results in Fig. 3, where the left column
is the source emotion Es and the target emotion Et is placed
on the right. By tuning the weight α ∈ (0, 1), we can lin-
early blend the source and target expressions. Meanwhile,



the mouth shape remains unchanged, thus achieving emo-
tion manipulation.
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